By Topic

An Updated Taxonomy of Evolutionary Computation Problems using Graph-based Evolutionary Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
D. A. Ashlock ; Mathematics and Statistics, University of Guelph, Guelph, ON Canada N1G 2R4, ; K. M. Bryden ; S. Corns ; J. Schonfeld

Graph based evolutionary algorithms use combinatorial graphs to impose a topology or "geographic structure" on an evolving population. It has been demonstrated that, for a fixed problem, time to solution varies substantially with the choice of graph. This variation is not simple with very different graphs yielding faster solution times for different problems. Normalized time to solution for many graphs thus forms an objective character that can be used for classifying the type of a problem, separate from its hardness measured with average time to solution. This study uses fifteen combinatorial graphs to classify 40 evolutionary computation problems. The resulting classification is done using neighbor joining, and the results are also displayed using non-linear projection. The different methods of grouping evolutionary computation problems into similar types exhibit substantial agreement. Numerical optimization problems form a close grouping while some other groups of problems scatter across the taxonomy. This paper updates an earlier taxonomy of 23 problems and introduces new classification techniques.

Published in:

2006 IEEE International Conference on Evolutionary Computation

Date of Conference:

0-0 0