By Topic

Learning by Switching Knowledge Representations-Limiting the Number of Stored Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

When we solve a problem, we initially have no knowledge and we memorize the raw data with observing data. Finally we have general knowledge for solving the problem. To simulate this learning process, we proposed a learning method with switching different levels of knowledge representations, reconstructing knowledge and switching reasoning methods. In the system, all given data are stored to generate new knowledge, but it is different from the one of our human's knowledge acquisition, in which we just memorize a limit number of data. Therefore, we limit it and when the number of stored data exceeds specified size, the system throws away the oldest data. In the simulation, we apply the method to the data set whose classes are changed periodically, and get a better result than the old method.

Published in:

Fuzzy Systems, 2006 IEEE International Conference on

Date of Conference:

0-0 0