By Topic

Distributed fault-tolerant real-time systems: the Mars approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kopetz, H. ; Tech. Univ., Vienna, Austria ; Damm, A. ; Koza, C. ; Mulazzani, M.
more authors

The authors describe the Maintainable Real-Time System, a fault-tolerant distributed system for process control, developed under the Mars project started in 1980 at the Technische Universitat Berlin. They explore the characteristics of distributed real-time systems and then present the Mars approach to real-time process control, its architectural design and implementation, and one of its applications. The authors focus on the maintainability of the Mars architecture, describe the Mars operating system, and discuss timing analysis. The control of a rolling mill that produces metal plates and bars is examined.<>

Published in:

Micro, IEEE  (Volume:9 ,  Issue: 1 )