By Topic

Statistical analysis for multiplicatively modulated nonlinear autoregressive model and its applications to electrophysiological signal analysis in humans

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kato, H. ; NTT Commun. Sci. Labs., Kyoto ; Taniguchi, M. ; Honda, M.

Modulating the dynamics of a nonlinear autoregressive model with a radial basis function (RBF) of exogenous variables is known to reduce the prediction error. Here, RBF is a function that decays to zero exponentially if the deviation between the exogenous variables and a center location becomes large. This paper introduces a class of RBF-based multiplicatively modulated nonlinear autoregressive (mmNAR) models. First, we establish the local asymptotic normality (LAN) for vector conditional heteroscedastic autoregressive nonlinear (CHARN) models, which include the mmNAR and many other well-known time-series models as special cases. Asymptotic optimality for estimation and testing is described in terms of LAN properties. The mmNAR model indicates goodness-of-fit for surface electromyograms (EMG) using electrocorticograms (ECoG) as the exogenous variables. Concretely, it is found that the negative potential of the motor cortex forces change in the frequency of EMG, which is reasonable from a physiological point of view. The proposed mmNAR model fitting is both useful and efficient as a signal-processing technique for extracting information on the action potential, which is associated with the postsynaptic potential

Published in:

Signal Processing, IEEE Transactions on  (Volume:54 ,  Issue: 9 )