By Topic

Single-block differential transmit scheme for broadband wireless MIMO-OFDM systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Himsoon, T. ; Dept. of Electr. & Comput. Eng., Maryland Univ., College Park, MD ; Su, W. ; Liu, K.J.R.

In frequency-selective multiple-input multiple-output (MIMO) channel, differential space-time-frequency (DSTF) modulations are known as practical alternatives that are capable of exploiting the available spatial and frequency diversities without the requirement of multichannel estimation at the receiver. However, the encoding nature of the DSTF schemes that expand several OFDM symbol periods makes the DSTF schemes susceptible to fast-changing channel conditions. In this paper, we propose a differential scheme for MIMO-OFDM systems that is able to differentially encode signal within two OFDM symbol periods, and the proposed scheme transmits the differentially encoded signal within one OFDM block. The scheme not only reduces encoding and decoding delay but also relaxes the restriction on channel assumption. The successful differential decoding of the proposed scheme depends on the assumption that the fading channels keep constant over two OFDM symbol periods rather than multiple of them as required in the existing DSTF schemes. We also provide pairwise error probability analysis and quantify the performance criteria in terms of diversity and coding advantages. The design criteria reveal that the existing diagonal cyclic codes can be applied to achieve full diversity. Performance simulations under various channel conditions show that our proposed scheme yields superior performance to previously proposed differential schemes

Published in:

Signal Processing, IEEE Transactions on  (Volume:54 ,  Issue: 9 )