Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Control of a doubly fed induction generator in a wind turbine during grid fault ride-through

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Dawei Xiang ; Dept. of Electr. Eng., Chongqing Univ. ; Ran, L. ; Tavner, P.J. ; Yang, S.

This paper analyzes the ability of a doubly fed induction generator (DFIG) in a wind turbine to ride through a grid fault and the limitations to its performance. The fundamental difficulty for the DFIG in ride-through is the electromotive force (EMF) induced in the machine rotor during the fault, which depends on the dc and negative sequence components in the stator-flux linkage and the rotor speed. The investigation develops a control method to increase the probability of successful grid fault ride-through, given the current and voltage capabilities of the rotor-side converter. A time-domain computer simulation model is developed and laboratory experiments are conducted to verify the model and a control method is proposed. Case studies are then performed on a representatively sized system to define the feasibility regions of successful ride-through for different types of grid faults

Published in:

Energy Conversion, IEEE Transactions on  (Volume:21 ,  Issue: 3 )