By Topic

Using hidden scale for salient object detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chalmond, Bernard ; Ecole Normale Superieure de Cachan ; Francesconi, B. ; Herbin, S.

This paper describes a method for detecting salient regions in remote-sensed images, based on scale and contrast interaction. We consider the focus on salient structures as the first stage of an object detection/recognition algorithm, where the salient regions are those likely to contain objects of interest. Salient objects are modeled as spatially localized and contrasted structures with any kind of shape or size. Their detection exploits a probabilistic mixture model that takes two series of multiscale features as input, one that is more sensitive to contrast information, and one that is able to select scale. The model combines them to classify each pixel in salient/nonsalient class, giving a binary segmentation of the image. The few parameters are learned with an EM-type algorithm

Published in:

Image Processing, IEEE Transactions on  (Volume:15 ,  Issue: 9 )