Cart (Loading....) | Create Account
Close category search window

Motion compensation for intravascular ultrasound palpography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Leung, K.Y.E. ; Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands ; Baldewsing, R.A. ; Mastik, F. ; Schaar, J.A.
more authors

Rupture of vulnerable plaques in coronary arteries is the major cause of acute coronary syndromes. Most vulnerable plaques consist of a thin fibrous cap covering an atheromous core. These plaques can be identified using intravascular ultrasound (IVUS) palpography, which measures radial strain by cross-correlating RF signals at different intraluminal pressures. Multiple strain images (i.e., partial palpograms) are averaged per heart cycle to produce a more robust compounded palpogram. However, catheter motion due to cardiac activity causes misalignment of the RF signals and thus of the partial palpograms, resulting in less valid strain estimates. To compensate for in-plane catheter rotation and translation, we devised four methods based on block matching. The global rotation block matching (GRBM) and contour mapping (CMAP) methods measure catheter rotation, and local block matching (LBM) and catheter rotation and translation (CRT) estimate displacements of local tissue regions. These methods were applied to nine in vivo pullback acquisitions, made with a 20 MHz phased-array transducer. We found that all these methods significantly increase the number of valid strain estimates in the partial and compounded palpograms (P < 0.008). The best method, LBM, attained an average increase of 17% and 15%, respectively. Implementation of this method should improve the information coming from IVUS palpography, leading to better vulnerable plaque detection.

Published in:

Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on  (Volume:53 ,  Issue: 7 )

Date of Publication:

July 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.