By Topic

Efficient computation of transfer function dominant poles using subspace acceleration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rommes, J. ; Math. Inst., Utrecht Univ. ; Martins, N.

This paper describes a new algorithm to compute the dominant poles of a high-order scalar transfer function. The algorithm, called the subspace accelerated dominant pole algorithm (SADPA), is more robust than existing methods in finding both real and complex dominant poles and faster because of subspace acceleration. SADPA is able to compute the full set of dominant poles and produce good modal equivalents automatically, without any human interaction

Published in:

Power Systems, IEEE Transactions on  (Volume:21 ,  Issue: 3 )