Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

A hybrid genetic algorithm-interior point method for optimal reactive power flow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wei Yan ; Minist. of Educ., Key Lab. of High Voltage Eng. & Electr. New Technol., Chongqing ; Fang Liu ; Chung, C.Y. ; Wong, K.P.

By integrating a genetic algorithm (GA) with a nonlinear interior point method (IPM), a novel hybrid method for the optimal reactive power flow (ORPF) problem is proposed in this paper. The proposed method can be mainly divided into two parts. The first part is to solve the ORPF with the IPM by relaxing the discrete variables. The second part is to decompose the original ORPF into two sub-problems: continuous optimization and discrete optimization. The GA is used to solve the discrete optimization with the continuous variables being fixed, whereas the IPM solves the continuous optimization with the discrete variables being constant. The optimal solution can be obtained by solving the two sub-problems alternately. A dynamic adjustment strategy is also proposed to make the GA and the IPM to complement each other and to enhance the efficiency of the hybrid proposed method. Numerical simulations on the IEEE 30-bus, IEEE 118-bus and Chongqing 161-bus test systems illustrate that the proposed hybrid method is efficient for the ORPF problem

Published in:

Power Systems, IEEE Transactions on  (Volume:21 ,  Issue: 3 )