By Topic

Flexible hardware-friendly digital architecture for 2-D separable convolution-based scaling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cardells-Tormo, F. ; R&D Large Format Technol. Lab., Hewlett-Packard, Barcelona, Spain ; Arnabat-Benedicto, J.

There is not a single scaling technique that suits all kind of images. Final image quality (IQ) depends not only on the scale factor but also on the type of image (photo, CAD, Text...) the user is willing to print or display. Formally, any convolution-based scaling operation can be decomposed in three steps: an anti-aliasing filter, image reconstruction by continuous convolution and resampling to the final grid. Based on this formal framework, we propose a flexible hardware-friendly architecture to perform two-dimensional upscaling and downscaling at low hardware cost. In particular, we propose a discrete convolution engine operating a memory that stores a programmable 2-D-separable interpolation kernel. We also state a technique for optimizing the memory size given the kernel and the scale factor. Finally, we describe a novel flexible filter that overcomes aliasing artifacts regardless of image frequency content. The flexibility provided by the combination of the aforementioned elements allows the user to adjust the interpolation kernel and parameters to each specific type of image for IQ improvement.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:53 ,  Issue: 7 )