Cart (Loading....) | Create Account
Close category search window
 

Predicting High-Risk Preterm Birth Using Artificial Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Catley, C. ; Syst. & Comput. Eng. Dept., Carleton Univ., Ottawa, Ont. ; Frize, M. ; Walker, C.R. ; Petriu, D.C.

A reengineered approach to the early prediction of preterm birth is presented as a complimentary technique to the current procedure of using costly and invasive clinical testing on high-risk maternal populations. Artificial neural networks (ANNs) are employed as a screening tool for preterm birth on a heterogeneous maternal population; risk estimations use obstetrical variables available to physicians before 23 weeks gestation. The objective was to assess if ANNs have a potential use in obstetrical outcome estimations in low-risk maternal populations. The back-propagation feedforward ANN was trained and tested on cases with eight input variables describing the patient's obstetrical history; the output variables were: 1) preterm birth; 2) high-risk preterm birth; and 3) a refined high-risk preterm birth outcome excluding all cases where resuscitation was delivered in the form of free flow oxygen. Artificial training sets were created to increase the distribution of the underrepresented class to 20%. Training on the refined high-risk preterm birth model increased the network's sensitivity to 54.8%, compared to just over 20% for the nonartificially distributed preterm birth model

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:10 ,  Issue: 3 )

Date of Publication:

July 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.