By Topic

Feature Subset Selection for Improving the Performance of False Positive Reduction in Lung Nodule CAD

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Boroczky, L. ; Philips Res. North America, Briarcliff Manor, NY ; Luyin Zhao ; Lee, K.P.

We propose a feature subset selection method based on genetic algorithms to improve the performance of false positive reduction in lung nodule computer-aided detection (CAD). It is coupled with a classifier based on support vector machines. The proposed approach determines automatically the optimal size of the feature set, and chooses the most relevant features from a feature pool. Its performance was tested using a lung nodule database (52 true nodules and 443 false ones) acquired by multislice CT scans. From 23 features calculated for each detected structure, the suggested method determined ten to be the optimal feature subset size, and selected the most relevant ten features. A support vector machine classifier trained with the optimal feature subset resulted in 100% sensitivity and 56.4% specificity using an independent validation set. Experiments show significant improvement achieved by a system incorporating the proposed method over a system without it. This approach can be also applied to other machine learning problems; e.g. computer-aided diagnosis of lung nodules

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:10 ,  Issue: 3 )