By Topic

Co-Occurrence Analysis for Discovery of Novel Breast Cancer Pathology Patterns

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

To discover novel patterns in pathology co-occurrence, we have developed algorithms to analyze and visualize pathology co-occurrence. With access to a database of pathology reports, collected under a single protocol and reviewed by a single pathologist, we can conduct an analysis greater in its scope than previous studies looking at breast pathology co-occurrence. Because this data set is unique, specialized methods for pathology co-occurrence analysis and visualization are developed. Primary analysis is through a co-occurrence score based on the Jaccard coefficient. Density maps are used to visualize global co-occurrence. When our co-occurrence analysis is applied to a population stratified by menopausal status, we can successfully identify statistically significant differences in pathology co-occurrence patterns between premenopausal and postmenopausal women. Genomic and proteomic experiments are planned to discover biological mechanisms that may underpin differences seen in pathology patterns between populations

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:10 ,  Issue: 3 )