By Topic

Mining Statistically Significant Associations for Exploratory Analysis of Human Sleep Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Laxminarayan, P. ; iProspect.com, Watertown, MA ; Alvarez, S.A. ; Ruiz, C. ; Moonis, M.

We introduce a specialized association rule mining technique that can extract patterns from complex sleep data comprising polysomnographic recordings, clinical summaries, and sleep questionnaire responses. The rules mined can describe associations among temporally annotated events and questionnaire or summary data; e.g., the likelihood that an occurrence of a rapid eye movement (REM) sleep stage during the second 100 sleep epochs of the night is associated with moderate caffeine intake. We use chi2 analysis to ensure statistical significance of the mined rules at the level P<0.05. Our results, obtained by mining sleep-related data from 242 human subjects, reveal clinically interesting associations among the polysomnographic and summary variables. Our experience suggests that association mining may also be useful for selection of variables prior to using logistic regression

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:10 ,  Issue: 3 )