By Topic

A study on SMO-type decomposition methods for support vector machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pai-Hsuen Chen ; Dept. of Comput. Sci., Nat. Taiwan Univ., Taipei, Taiwan ; Rong-En Fan ; Chih-Jen Lin

Decomposition methods are currently one of the major methods for training support vector machines. They vary mainly according to different working set selections. Existing implementations and analysis usually consider some specific selection rules. This paper studies sequential minimal optimization type decomposition methods under a general and flexible way of choosing the two-element working set. The main results include: 1) a simple asymptotic convergence proof, 2) a general explanation of the shrinking and caching techniques, and 3) the linear convergence of the methods. Extensions to some support vector machine variants are also discussed.

Published in:

Neural Networks, IEEE Transactions on  (Volume:17 ,  Issue: 4 )