By Topic

Microwave-absorbing properties of de-aggregated flake-shaped carbonyl-iron particle composites at 2-18 GHz

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Baoshan Zhang ; Dept. of Phys., Nanjing Univ., China ; Yong Feng ; Jie Xiong ; Yi Yang
more authors

We have investigated the microwave-absorbing properties for different shapes and aggregated states of carbonyl-iron particles dispersed in epoxy resin matrix at various volume concentrations. Here, we discuss the requirements of lower reflection coefficient for the microwave permittivity εr=ε'-jε'' and permeability μr=μ'-jμ''. Compared to the aggregated sphere-shaped particles (SS), the de-aggregated flake-shaped carbonyl iron particles (FS) have higher permeability, lower permittivity, better filling characteristics in epoxy resin, and better absorbing properties in the frequency range of 2-18 GHz. For the FS composite with volume fraction of 0.60 at single-layer thickness of 1 mm, the calculated reflection loss at 2 GHz reaches -4.04 dB and the minimum reflection loss is -12.2 dB at 4.4 GHz, which indicates that the FS composite can be applied as a thinner microwave absorber in the S-band than if SS particles are used. The results also show that different volume concentrations can have high absorption at different wave bands, a fact on which the design of absorbing material can be based.

Published in:

IEEE Transactions on Magnetics  (Volume:42 ,  Issue: 7 )