Cart (Loading....) | Create Account
Close category search window
 

Off-state modulation of SOI floating-body

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chang, J.B. ; California Univ., Berkeley, CA, USA ; Sleight, J.W. ; Jenkins, K. ; Haensch, W.

Off-state modulation of the floating-body potential in partially depleted silicon-on-insulator (PDSOI) transistors from the 90-nm technology generation is observed using pulsed current-voltage (I-V) measurements. Varying the off-value of the gate voltage is shown to either decrease the transient on-current (Ion,trans) of PDSOI devices through gate-to-body leakage or increase Ion,trans due to gate-induced drain leakage. Dependence of Ion,trans on off-state gate bias is not observed in bulk devices, PDSOI devices with body contacts, or fully depleted SOI devices, confirming the role of floating-body in the observed effects. Thus, off-state conditions should be accounted for when considering floating-body effects and when using pulsed I-V measurements to study self-heating.

Published in:

Electron Device Letters, IEEE  (Volume:27 ,  Issue: 7 )

Date of Publication:

July 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.