By Topic

Tunable line spectral estimators based on state-covariance subspace analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Amini, A.N. ; Dept. of Electr. & Comput. Eng., Minnesota Univ. ; Georgiou, T.T.

Subspace methods for spectral analysis can be adapted to the case where state covariance of a linear filter replaces the traditional Toeplitz matrix formed out of a partial autocorrelation sequence of a time series. This observation forms the basis of a new framework for spectral analysis. The goal of this paper is to quantify potential advantages in working with state-covariance data instead of the autocorrelation sequence. To this end, we identify tradeoffs between resolution and robustness in spectral estimates and how these are affected by the filter dynamics. The approach leads to a novel tunable high-resolution frequency estimator

Published in:

Signal Processing, IEEE Transactions on  (Volume:54 ,  Issue: 7 )