By Topic

Integrating Co-Occurrence and Spatial Contexts on PatchBased Scene Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
F. Monay ; IDIAP Research Institute, Switzerland ; P. Quelhas ; J. -M. Odobez ; D. Gatica-Perez

We present a novel approach for contextual segmentation of complex visual scenes, based on the use of bags of local invariant features (visterms) and probabilistic aspect models. Our approach uses context in two ways: (1) by using the fact that specific learned aspects correlate with the semantic classes, which resolves some cases of visual polysemy, and (2) by formalizing the notion that scene context is image-specific -what an individual visterm represents depends on what the rest of the visterms in the same bag represent too-. We demonstrate the validity of our approach on a man-made vs. natural visterm classification problem. Experiments on an image collection of complex scenes show that the approach improves region discrimination, producing satisfactory results, and outperforming a non-contextual method. Furthermore, through the later use of a Markov Random Field model, we also show that co-occurrence and spatial contextual information can be conveniently integrated for improved visterm classification.

Published in:

2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06)

Date of Conference:

17-22 June 2006