Cart (Loading....) | Create Account
Close category search window
 

Pull-in voltage study of electrostatically actuated fixed-fixed beams using a VLSI on-chip interconnect capacitance model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chowdhury, S. ; Dept. of Electr. & Comput. Eng., Univ. of Windsor, Ont., Canada ; Ahmadi, M. ; Miller, W.C.

A highly accurate computationally efficient closed-form model has been developed to determine the pull-in voltage of an electrostatically actuated fixed-fixed beam. The approach includes the electrostatic spring softening effects due to the fringing field capacitances along with the nonlinear spring hardening effects associated with the load-deflection characteristics of a uniformly loaded fixed-fixed beam. Meijs and Fokkema's highly accurate empirical formula for the capacitance of a VLSI on-chip interconnect has been used to determine the spring softening effects due to the fringing field capacitances. The developed model has been verified by comparing the results with published experimentally verified three-dimensional (3-D) finite element analysis (FEA) results and with those from other published representative closed-form models. The developed model can determine the pull-in voltage with a maximum deviation of 1.27% from the FEA results for small deflections and for large deflections (airgap-beam thickness ratio =12), the deviation from the FEA results is 2.0%. A maximum deviation of 0.5% from the FEA results has been observed for extreme fringing field cases (beamwidth-airgap ratio ≤0.5). The model's accuracy range is better compared to the other published models.

Published in:

Microelectromechanical Systems, Journal of  (Volume:15 ,  Issue: 3 )

Date of Publication:

June 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.