By Topic

Multiobjective optimization and evolutionary algorithms for the application mapping problem in multiprocessor system-on-chip design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Erbas, C. ; Dept. of Comput. Sci., Univ. of Amsterdam, Netherlands ; Cerav-Erbas, S. ; Pimentel, A.D.

Sesame is a software framework that aims at developing a modeling and simulation environment for the efficient design space exploration of heterogeneous embedded systems. Since Sesame recognizes separate application and architecture models within a single system simulation, it needs an explicit mapping step to relate these models for cosimulation. The design tradeoffs during the mapping stage, namely, the processing time, power consumption, and architecture cost, are captured by a multiobjective nonlinear mixed integer program. This paper aims at investigating the performance of multiobjective evolutionary algorithms (MOEAs) on solving large instances of the mapping problem. With two comparative case studies, it is shown that MOEAs provide the designer with a highly accurate set of solutions in a reasonable amount of time. Additionally, analyses for different crossover types, mutation usage, and repair strategies for the purpose of constraints handling are carried out. Finally, a number of multiobjective optimization results are simulated for verification.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:10 ,  Issue: 3 )