By Topic

Comprehensive learning particle swarm optimizer for global optimization of multimodal functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. J. Liang ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore ; A. K. Qin ; P. N. Suganthan ; S. Baskar

This paper presents a variant of particle swarm optimizers (PSOs) that we call the comprehensive learning particle swarm optimizer (CLPSO), which uses a novel learning strategy whereby all other particles' historical best information is used to update a particle's velocity. This strategy enables the diversity of the swarm to be preserved to discourage premature convergence. Experiments were conducted (using codes available from on multimodal test functions such as Rosenbrock, Griewank, Rastrigin, Ackley, and Schwefel and composition functions both with and without coordinate rotation. The results demonstrate good performance of the CLPSO in solving multimodal problems when compared with eight other recent variants of the PSO.

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:10 ,  Issue: 3 )