By Topic

Position sensing in brake-by-wire callipers using resolvers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hoseinnezhad, R. ; Fac. of Eng. & Ind. Sci., Swinburne Univ. of Technol., Hawthorn, Vic.

Recent designs for brake-by-wire systems use "resolvers" to provide accurate and continuous measurements for the absolute position and speed of the rotor of the electric actuators in brake callipers (permanent magnet DC motors). Resolvers are absolute-angle transducers that are integrated with estimator modules called "angle tracking observer" and together they provide position and speed measurements. Current designs for angle-tracking observers are unstable in applications with high acceleration and/or speed. In this paper, we introduce a new angle-tracking observer in which a closed-loop linear time-invariant (LTI) observer is integrated with a quadrature encoder. Finite-gain stability of the proposed design and its robustness to three different kinds of parameter variations are proven based on theorems of input-output stability in nonlinear control theory. In our experiments, we examined the performance of our observer and two other methods (a well-known LTI observer and an extended Kalman filter) to estimate the position and speed of a brake-by-wire actuator. The results show that because of the very high speed and acceleration of the actuator in this application, the LTI observer and Kalman filter cannot track the rotor position and diverge. In contrast, with a properly designed open-loop transfer function and selecting a suitable switching threshold, our proposed angle-tracking observer is stable and highly accurate in a brake-by-wire application

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:55 ,  Issue: 3 )