By Topic

Virtual MIMO-based cross-layer design for wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yong Yuan ; Dept. of Electron. & Inf., Huazhong Univ. of Sci. & Technol., Wuhan City ; Zhihai He ; Min Chen

In this paper, a novel multihop virtual multiple-input-multiple-output (MIMO) communication protocol is proposed by the cross-layer design to jointly improve the energy efficiency, reliability, and end-to-end (ETE) QoS provisioning in wireless sensor network (WSN). In the protocol, the traditional low-energy adaptive clustering hierarchy protocol is extended by incorporating the cooperative MIMO communication, multihop routing, and hop-by-hop recovery schemes. Based on the protocol, the overall energy consumption per packet transmission is modeled and the optimal set of transmission parameters is found. Then, the issues of ETE QoS provisioning of the protocol are considered. The ETE latency and throughput of the protocol are modeled in terms of the bit-error-rate (BER) performance of each link. Then, a nonlinear constrained programming model is developed to find the optimal BER performance of each link to meet the ETE QoS requirements with a minimum energy consumption. The particle swarm optimization (PSO) algorithm is employed to solve the problem. Simulation results show the effectiveness of the proposed protocol in energy saving and QoS provisioning

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:55 ,  Issue: 3 )