Cart (Loading....) | Create Account
Close category search window
 

Second-order accurate FDTD space and time grid refinement method in three space dimensions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zakharian, A.R. ; ACMS & Opt. Sci. Center, Univ. of Arizona, Tucson, AZ ; Brio, M. ; Dineen, C. ; Moloney, J.V.

We present an algorithm based on the finite-difference time-domain method for local refinement of a three-dimensional computational grid in space and time. The method has second-order accuracy in space and time as verified in the numerical examples. A number of test cases with material traverse normal to the grid interfaces were used to assess the long integration time stability of the algorithm. Resulting improvements in the computation time are discussed for a photonic crystal microcavity design that exhibits a sensitive dependence of the quality factor on subwavelength geometrical features

Published in:

Photonics Technology Letters, IEEE  (Volume:18 ,  Issue: 11 )

Date of Publication:

June 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.