Cart (Loading....) | Create Account
Close category search window
 

Novel concept of a single-mass adaptively controlled triaxial angular rate sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
John, J.D. ; Sch. of Electr. & Comput. Eng., RMIT Univ., Melbourne, Vic. ; Vinay, T.

This paper presents a novel concept for an adaptively controlled triaxial angular rate (AR) sensor device that is able to detect rotation in three orthogonal axes, using a single vibrating mass. Pedestrian navigation is presented as an example demonstrating the suitability of the proposed device to the requirements of emerging applications. The adaptive controller performs various functions. It updates estimates of all stiffness error, damping and input rotation parameters in real time, removing the need for any offline calibration stages. The parameter estimates are used in feedforward control to cancel out their otherwise erroneous effects, including zero-rate output. The controller also drives the mass along a controlled oscillation trajectory, removing the need for additional drive control. Finally, the output of the device is simply an estimate of input rotation, removing the need for additional demodulation normally used for vibratory AR sensors. To enable all unknown parameter estimates to converge to their true values, the necessary model trajectory is shown to be a three-dimensional Lissajous pattern. A modified trajectory algorithm is presented that aims to reduce errors due to discretization of the continuous time system. Simulation results are presented to verify the operation of the adaptive controller. A finite-element modal analysis of a preliminary structural design is presented. It shows a micro electro mechanical systems realizable design having modal shapes and frequencies suitable for implementing the presented adaptive controller

Published in:

Sensors Journal, IEEE  (Volume:6 ,  Issue: 3 )

Date of Publication:

June 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.