By Topic

An RF-powered, wireless CMOS temperature sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kocer, F. ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI ; Flynn, M.P.

We present a wireless, fully integrated CMOS temperature sensor that recovers power from a radio frequency (RF) signal, and returns data as a frequency-modulated 2.3-GHz signal to a base station. Power is recovered from a 450-MHz incident signal with the help of a low-threshold, high-efficiency, voltage rectifier-multiplier circuit. This technique decreases the minimum incident RF power required, compared to state-of-the-art wirelessly powered telemetry systems. The rectifier-multiplier can collect energy from a base station placed up to 18 m away. To further increase the range from the base, the device collects energy in a low power standby/charging mode. A mode selector circuit monitors the amount stored energy and decides if the system is transmitting data or is in the standby/charging mode. A bootstrapped reference generates a complementary to absolute temperature (CTAT) voltage with an R-squared regression of 0.9995 to a linear fit. This reference is used as the temperature sensor of the system, controlling a low-power, integrated, voltage-controlled LC oscillator (VCO). The oscillation frequency of the VCO is modulated by ambient temperature changes. The modulated carrier is transmitted by a fully integrated power amplifier. A temperature sensitivity of 126 ppm/degC is achieved and the entire sensor consumes 1.1 mA while transmitting data

Published in:

Sensors Journal, IEEE  (Volume:6 ,  Issue: 3 )