By Topic

Group path formation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Goldstone, R.L. ; Psychol. Dept., Indiana Univ., Bloomington, IN ; Jones, A. ; Roberts, M.E.

When people make choices within a group, they are frequently influenced by the choices made by others. We have experimentally explored the general phenomenon of group behavior where an early action facilitates subsequent actions. Our concrete instantiation of this problem is group path formation where people travel between destinations with the travel cost for moving onto a location inversely related to the frequency with which others have visited the location. We compare the resulting paths to optimal solutions [minimal Steiner trees (MSTs)] and the "Active Walker" model of pedestrian motion from biophysics. There were systematic deviations from beeline pathways in the direction of MST. These deviations showed asymmetries (people took different paths from A to B than they did from B to A) and varied as a function of the topology of the destinations, the duration of travel, and the absolute scale of the world. The Active Walker model accounted for many of these results, in addition to correctly predicting the approximate spatial distribution of steps

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:36 ,  Issue: 3 )