By Topic

A novel queue management mechanism for improving performance of multihop flows in IEEE 802.11s based mesh networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
N. S. Nandiraju ; Dept. of ECECS, Cincinnati Univ., OH, USA ; D. S. Nandiraju ; D. Cavalcanti ; D. P. Agrawal

Wireless mesh networks exploit multi-hop wireless communications between access points to replace wired infrastructure. However, in multi-hop networks, effective bandwidth decreases with increasing number of hops, mainly due to increased spatial contention. Longer hop length flows suffer from extremely low throughputs which is highly undesirable in the envisioned scenarios for mesh networks. In this paper, we show that queue/buffer management, at intermediate relay mesh nodes, plays an important role in limiting the performance of longer hop length flows. We propose a novel queue management algorithm for IEEE 802.11s based mesh networks that improves the performance of multihop flows by fairly sharing the available buffer at each mesh point among all the active source nodes whose flows are being forwarded. Extensive simulations reveal that our proposed scheme substantially improves the performance of multihop flows. We also identify some important design issues that should be considered for the practical deployment of such mesh networks

Published in:

2006 IEEE International Performance Computing and Communications Conference

Date of Conference:

10-12 April 2006