By Topic

A novel aluminum-filled composite dielectric for embedded passive applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jianwen Xu ; Packaging Res. Center, Georgia Inst. of Technol., Atlanta, GA, USA ; Kyoung-Sik Moon ; Tison, C. ; Wong, C.P.

This paper presents the development of a novel aluminum-filled high dielectric constant composite for embedded passive applications. Aluminum is well known as a low-cost and fast self-passivation metal. The self-passivation forms a nanoscale insulating boundary outside of the metallic spheres, which has dramatic effects on the electrical, mechanical, and chemical behaviors of the resulting composites. Influences of aluminum particle size and filler loading on the dielectric properties of composites were studied. Because of the self-passivated insulating oxide layer of fine aluminum spheres, a high loading level of aluminum can be used while the composite materials continues to be insulating. Dielectric property measurement demonstrated that, for composites containing 80 wt% 3.0 μm aluminum, a dielectric constant of 109 and a low dissipation factor of about 0.02 can be achieved. The dielectric constant of epoxy-aluminum composites increased almost 30 times as compared with that of the pure epoxy matrix, which is about 3.5. Die shear tests showed that at such loading level, materials still had good processability and good adhesion toward the substrate. Bulk resistivity measurement, high-resolution transmission electron microscope (HRTEM) observation, and thermogravimetric analysis (TGA) were conducted to characterize the aluminum powders in order to understand the dielectric behavior of aluminum-filled composites. Bimodal aluminum-filled composites were also systematically studied in order to further increase the dielectric constant. Ouchiyama-Tanaka's model was used to calculate the theoretical maximum packing fraction (MPF) of bimodal systems. Based on the calculation, rheology studies were performed to find the optimum bimodal filler volume fraction ratio that led to the best packing efficiency of bimodal fillers. It was found that the viscosity of polymer composites showed a minimum at optimum bimodal filler volume fraction ratio. A high dielectric constant of 160 (@10 kHz) with a low dissipation factor of less than 0.025 was achieved with the optimized bimodal aluminum composites. The developed aluminum composite is a promising candidate material for embedded capacitor applications.

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:29 ,  Issue: 2 )