By Topic

Oriented and Vectorial Patterning of Cardiac Myocytes Using a Microfluidic Dielectrophoresis Chip - Towards Engineered Cardiac Tissue with Controlled Macroscopic Anisotropy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yang, M. ; Boston University, Boston, Massachusetts, USA ; Lim, C.C. ; Liao, R. ; Zhang, X.

Recently, the ability to create engineered heart tissues with a preferential cell orientation has gained much interest. Here, we present a novel method to construct a cardiac myocyte tissue-like structure using a combination of dielectrophoresis and electro-orientation via a microfluidic chip. Using the interdigitated-castellated microelectrodes, the induction of a mutually attractive dielectrophoretic force between cardiac myocytes can lead the cells moving close to each other and forming a tissue-like structure with orientation along the AC electric field between the electrode gaps. Both experimental results and theoretical analysis have indicated that a large orientation torque and force can be achieved by choosing an optimal frequency and decreasing the conductivity of the medium to a low level, where the orientation torque weakly depends on the frequency. In this paper, electromechanical experiments were performed to demonstrate the structural and functional anisotropy of the electro-oriented structure.

Published in:

Micro Electro Mechanical Systems, 2006. MEMS 2006 Istanbul. 19th IEEE International Conference on

Date of Conference:

2006