Cart (Loading....) | Create Account
Close category search window
 

A mobility based link layer approach for mobile wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Raviraj, P. ; Dept. of CEEN, Nebraska-Lincoln Univ., Omaha, NE ; Sharif, H. ; Hempel, M. ; Song Ci
more authors

Several MAC protocols have been proposed for wireless sensor networks (WSNs). These include T-MAC, D-MAC and the more commonly utilized SMAC. In this paper, we propose a new MAC layer approach to support mobility in WSNs. The proposed technique utilizes an adaptive frame size approach to overcome the effect of frame losses caused by the Doppler shifts under mobile scenarios. An extended Kalman filter is used to predict the frame size for each transmission, which also directly enhances the energy efficiency of the system. Our results show that based on the adaptive frame size predictor and its comparison with the SMAC protocol, the proposed technique can improve overall system performance and deliver enhanced energy efficiency of 24% under mobility. The current implementation of ns-2 does not take into consideration the packet error rate. As another contribution of our work, we have developed a physical layer model for ns-2, which processes the received frame based not only on the fading characteristics of the signal but also the SNR and relative velocity between the nodes. To characterize a more accurate wireless sensor networks' physical layer, we have modeled the Mica-2 sensors in MATLAB and implemented the model in ns-2 for simulations

Published in:

Electro Information Technology, 2005 IEEE International Conference on

Date of Conference:

22-25 May 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.