By Topic

Reduced-encoding MRI using higher-order generalized series

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
D. Hernando ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL, USA ; J. Haldar ; Zhi-Pei Liang

Reduced-encoding MRI has been used in a wide variety of MR applications where temporal resolution is critical. Although the Generalized Series model (with basis functions constructed from a reference image) allows the reconstruction of high-resolution dynamic images from a small number of encodings, the ability of the model to capture localized dynamic features is limited by the model order, which in the past has been set equal to the number of encodings acquired. This paper extends this model by incorporating higher frequency terms, which allows for a sharper reconstruction of new localized features. Since the series coefficients of the higher-order model are underdetermined by the data collected, two important issues arise which are addressed in this paper: the definition of an appropriate regularization criterion and the solution of the corresponding optimization problem. Results from simulated as well as biological data are also provided to demonstrate the properties of this model

Published in:

3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006.

Date of Conference:

6-9 April 2006