By Topic

Multiresolution FIR neural-network-based learning algorithm applied to network traffic prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alarcon-Aquino, V. ; Dept. of Electr. & Electron. Eng., Univ. de las Americas-Puebla, Puebla, Mexico ; Barria, J.A.

In this paper, a multiresolution finite-impulse-response (FIR) neural-network-based learning algorithm using the maximal overlap discrete wavelet transform (MODWT) is proposed. The multiresolution learning algorithm employs the analysis framework of wavelet theory, which decomposes a signal into wavelet coefficients and scaling coefficients. The translation-invariant property of the MODWT allows alignment of events in a multiresolution analysis with respect to the original time series and, therefore, preserving the integrity of some transient events. A learning algorithm is also derived for adapting the gain of the activation functions at each level of resolution. The proposed multiresolution FIR neural-network-based learning algorithm is applied to network traffic prediction (real-world aggregate Ethernet traffic data) with comparable results. These results indicate that the generalization ability of the FIR neural network is improved by the proposed multiresolution learning algorithm.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:36 ,  Issue: 2 )