Cart (Loading....) | Create Account
Close category search window
 

Piezoelectric unimorph microactuator arrays for single-crystal silicon continuous-membrane deformable mirror

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Micromachined deformable mirror technology can boost the imaging performance of an otherwise nonrigid, lower-quality telescope structure. This paper describes the optimization of lead zirconium titanate (PZT) unimorph membrane microactuators for deformable mirrors. PZT unimorph actuators consisting of a variety of electrode designs, silicon-membrane thickness, and membrane sizes were fabricated and characterized. A mathematical model was developed to accurately simulate the membrane microactuator performance and to aid in the optimization of membrane thicknesses and electrode geometries. Excellent agreement was obtained between the model and the experimental results. Using the above approach, we have successfully demonstrated a 2.5-mm-diameter PZT unimorph actuator. A measured deflection of 5 μm was obtained for 50 V applied voltage. Complete deformable mirror structures consisting of 10-μm-thick single-crystal silicon mirror membranes mounted over the aforementioned 4×4 4 PZT unimorph membrane microactuator arrays were designed, fabricated, assembled, and optically characterized. The fully assembled deformable mirror showed an individual pixel stroke of 2.5 μm at 50 V actuation voltage. The deformable mirror has a resonance frequency of 42 kHz and an influence function of approximately 25%.

Published in:

Microelectromechanical Systems, Journal of  (Volume:15 ,  Issue: 2 )

Date of Publication:

April 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.