By Topic

Design and energetic characterization of a proportional-injector monopropellant-powered actuator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
K. B. Fite ; Dept. of Mech. Eng., Vanderbilt Univ., Nashville, TN, USA ; M. Goldfarb

This paper describes the design and energetic characterization of an actuator designed to provide enhanced system energy and power density for self-powered robots. The proposed actuator is similar to a typical compressible gas fluid-powered actuator, but pressurizes the respective cylinder chambers via a pair of proportional injector valves, which control the flow of a liquid monopropellant through a pair of catalyst packs and into the respective sides of the double-acting cylinder. This paper describes the design of the proportional injection valves and describes the structure of a force controller for the actuator. Finally, an energetic characterization of the actuator shows improvement relative to prior configurations and marked improvement relative to state-of-the-art batteries and motors.

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:11 ,  Issue: 2 )