By Topic

Degrees of freedom in some underspread MIMO fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Etkin, R.H. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of California, Berkeley, CA, USA ; Tse, D.N.C.

Consider a multiple-input multiple-output (MIMO) fading channel in which the fading process varies slowly over time. Assuming that neither the transmitter nor the receiver have knowledge of the fading process, do multiple transmit and receive antennas provide significant capacity improvements at high signal-to-noise ratio (SNR)? For regular fading processes, recent results show that capacity ultimately grows doubly logarithmically with the SNR independently of the number of transmit and receive antennas used. We show that for the Gauss-Markov fading process in all regimes of practical interest the use of multiple antennas provides large capacity improvements. Nonregular fading processes show completely different high-SNR behaviors due to the perfect predictability of the process from noiseless observations. We analyze the capacity of MIMO channels with nonregular fading by presenting a lower bound, which we specialize to the case of band-limited slowly varying fading processes to show that the use of multiple antennas is still highly beneficial. In both cases, regular and nonregular fading, this capacity improvement can be seen as the benefit of having multiple spatial degrees of freedom. For the Gauss-Markov fading model and all regimes of practical interest, we present a communication scheme that achieves the full number of degrees of freedom of the channel with tractable complexity. Our results for underspread Gauss-Markov and band-limited nonregular fading channels suggest that multiple antennas are useful at high SNR.

Published in:

Information Theory, IEEE Transactions on  (Volume:52 ,  Issue: 4 )