By Topic

Bounds on capacity and minimum energy-per-bit for AWGN relay channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. El Gamal ; Inf. Syst. Lab., Stanford Univ., CA, USA ; M. Mohseni ; S. Zahedi

Upper and lower bounds on the capacity and minimum energy-per-bit for general additive white Gaussian noise (AWGN) and frequency-division AWGN (FD-AWGN) relay channel models are established. First, the max-flow min-cut bound and the generalized block-Markov coding scheme are used to derive upper and lower bounds on capacity. These bounds are never tight for the general AWGN model and are tight only under certain conditions for the FD-AWGN model. Two coding schemes that do not require the relay to decode any part of the message are then investigated. First, it is shown that the "side-information coding scheme" can outperform the block-Markov coding scheme. It is also shown that the achievable rate of the side-information coding scheme can be improved via time sharing. In the second scheme, the relaying functions are restricted to be linear. The problem is reduced to a "single-letter" nonconvex optimization problem for the FD-AWGN model. The paper also establishes a relationship between the minimum energy-per-bit and capacity of the AWGN relay channel. This relationship together with the lower and upper bounds on capacity are used to establish corresponding lower and upper bounds on the minimum energy-per-bit that do not differ by more than a factor of 1.45 for the FD-AWGN relay channel model and 1.7 for the general AWGN model.

Published in:

IEEE Transactions on Information Theory  (Volume:52 ,  Issue: 4 )