By Topic

A time-based VLSI potentiostat for ion current measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
H. S. Narula ; Comput. Neuro-Eng. Lab, Univ. of Florida, Gainesville, FL, USA ; J. G. Harris

A time-based CMOS integrated potentiostatic control circuit has been designed and fabricated. The design maintains a constant bias potential between the reference and working electrodes for an amperometric chemical sensor. A technique of converting input currents into time for amperometric measurements is proposed. This technique eliminates current amplifying circuitry, reduces matching problems, and increases dynamic range while saving on area and power consumption. Redox currents ranging from 1 pA to 200 nA can be measured with a maximum nonlinearity of ±0.1% over this range. The design can be used to generate cyclic voltammograms for an electrochemical reaction by sweeping the voltages across a range specified by the user. Analog inputs are processed and digital outputs are generated without requiring a power-hungry A/D converter. A prototype chip has been fabricated in the 0.5-μm AMI CMOS process. Experimental results are reported showing the performance of the circuit as a chemical sensor.

Published in:

IEEE Sensors Journal  (Volume:6 ,  Issue: 2 )