By Topic

Technology Decomposition and Mapping Targeting Low Power Dissipation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chi-Ying Tsui ; Department of Electrical Engineering - Systems, University of Southern California, Los Angeles, CA ; M. Pedram ; A. M. Despain

In this paper, we address the problem of minimizing the average power dissipation during the technology dependent phase of logic synthesis. Our approach consists of two steps. In the first step, we generate a NAND decomposition of an optimized Boolean network such that the sum of average switching rates for all nodes in the network is minimum. Our power-efficient decomposition procedure is optimal for dynamic CMOS circuits with uncorrelated input signals and produces very good results for static CMOS. In the second step, we perform a power efficient technology mapping that finds an optimal power-delay trade-off value (subject to the unknown load problem) for given timing constraints. We obtain an average of 21% improvement in power at the expense of 12.6% increase in area and without any degradation in performance on a number of benchmarks.

Published in:

Design Automation, 1993. 30th Conference on

Date of Conference:

14-18 June 1993