Cart (Loading....) | Create Account
Close category search window
 

P-V-T-C equation for epoxy molding compound

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sheng-Jye Hwang ; Dept. of Mech. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Yi-San Chang

The isothermal and isobaric volume shrinkage is measured by a single-plunger-type dilatometer for epoxy molding compound (EMC). This device has been found suitable for measuring volume change of thermosetting materials such as commercial EMC under isothermal and isobaric conditions. Moreover, the degree of cure (conversion) was determined by a differential scanning calorimetry (DSC). Combining volume change and conversion, a mathematic pressure-volume-temperature-cure (P-V-T-C) model is proposed to describe the relationship between volume shrinkage, pressure, temperature and conversion. The P-V-T-C equation can be simply expressed as VS(P,T,C)=F1(P,T)·CF2(P,T). This equation can well describe historical profiles of volume shrinkage under specified isothermal and isobaric states. From the predicted results, volume shrinkage under different pressure levels in any specified temperature can be approximated as and it obeys the principle of linearity. With the help of this model, together with three-dimensional mold filling simulation, engineers will be able to predict warpage and residual stresses for a package after molding.

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:29 ,  Issue: 1 )

Date of Publication:

March 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.