By Topic

Microfluidic Injector Models Based on Artificial Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Lab-on-a-chip (LoC) systems can be functionally decomposed into their basic operating devices. Common devices are mixers, reactors, injectors, and separators. In this paper, the injector device is modeled using artificial neural networks (NNs) trained with finite element simulations of the underlying mass transport partial differential equations (PDEs). This technique is used to map the injector behavior into a set of analytical performance functions parameterized by the system's physical variables. The injector examples shown are the cross, the double-tee, and the gated-cross. The results are four orders of magnitude faster than numerical simulation and accurate with mean square errors (MSEs) on the order of 10^-4 . The resulting NN training data compare favorably with experimental data from a gated-cross injector found in the literature.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:25 ,  Issue: 2 )