Cart (Loading....) | Create Account
Close category search window
 

Friction compensation in a controlled one-link robot using a reduced-order observer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mallon, N. ; Dynamics & Control Group, Eindhoven Univ. of Technol., Netherlands ; van de Wouw, N. ; Putra, D. ; Nijmeijer, H.

In this paper, friction compensation in a controlled one-link robot is studied. Since friction is generally velocity dependent and controlled mechanical systems are often equipped with position sensors only, friction compensation requires some form of velocity estimation. Here, the velocity estimate is provided by a reduced-order observer. The friction is modeled by a set-valued velocity map including an exponential Stribeck curve. For the resulting discontinuous closed-loop dynamics, both the case of exact friction compensation and nonexact friction compensation are investigated. For the case of exact friction compensation, design rules in terms of controller and observer parameter settings, guaranteeing global exponential stability of the set-point are proposed. If the proposed design rules are not fulfilled, the system can exhibit a nonzero steady-state error and limit cycling. Moreover, in the case of nonexact friction compensation, it is shown that undercompensation leads to the existence of an equilibrium set and overcompensation leads to limit cycling. These results are obtained both numerically and experimentally.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:14 ,  Issue: 2 )

Date of Publication:

March 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.