By Topic

Spontaneous speed reversals in stepper motors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. Bodson ; Electr. & Comput. Eng. Dept., Univ. of Utah, Salt Lake City, UT, USA ; J. S. Sato ; S. R. Silver

Experimental data shows that permanent magnet stepper motors can spontaneously reverse their direction of rotation when controlled in full step, open-loop mode. This paper shows that the reversal of speed can be explained, and that the reverse speed is equal to three times the forward speed. A linear approximation of the motor dynamics predicts that reverse running will arise when the undershoot of the single-step response exceeds 50% (or when the damping factor is less than 0.11). The observations of this paper suggest a revision of the conventional explanation that resonance problems occur because of high positive velocity at the stepping time. Instead, the data and the analysis of the paper suggest that resonance problems, including stalling and speed reversal, occur due to the growth of the undershoot in the response to repeated steps.

Published in:

IEEE Transactions on Control Systems Technology  (Volume:14 ,  Issue: 2 )