By Topic

Asynchronous design: an enabler for flexible microelectronics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Karaki, N. ; Seiko Epson Corp., Nagano

Summary form only given. Flexible microelectronics technology featuring low-temperature polysilicon (LTPS) TFT and surface free technology by laser annealing and ablation (SUFTLAR) is expected to become a platform for developing thin, flexible and low-cost display devices. LTPS TFTs are good for realizing large area displays and integrated circuits at lower cost. A drawback of LTPS TFTs, however, is that they have substantial deviations in characteristics, which are caused by deviations mainly in crystal grain size and thickness of silicon-oxide. Until now, these deviations were considered to be beyond the capability of synchronous circuit design, especially for large-scale circuits such as microprocessors driven by global clocking. Since asynchronous circuits are "self-timed", they absorb the deviations of device characteristics. Plus they run as faster as possible in event-driven fashion dissipating less power, and remain on standby for quick service. Even with the benefits of asynchronous circuits, it is considered difficult to proceed with circuit design using syntax-directed translation using VLSI programming languages such as CSP, Tangram and OCCAM, syntax of which is far from the standard HDL. The authors then decided to develop Verilog+ that comprises a subset of Verilog HDLR and minimal primitives used for describing the communications between processes. Flexible 8-bit asynchronous microprocessor ACT11 is the first successful instance of asynchronous design using Verilog+ without knowledge of element and wire delay except for datapath

Published in:

Asynchronous Circuits and Systems, 2006. 12th IEEE International Symposium on

Date of Conference:

13-15 March 2006