Cart (Loading....) | Create Account
Close category search window
 

Designing an archival Satellite transmitter for life-long deployments on oceanic vertebrates: the life history transmitter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Horning, M. ; Dept. of Marine Biol., Texas A&M Univ., Galveston, TX ; Hill, R.D.

Despite the widespread use of sophisticated telemetry transmitters in behavioral, physiological and ecological studies, few studies on population dynamics of oceanic vertebrates use such technology, primarily due to the difficulty of obtaining multi-year records from individual animals. We present the first telemetry transmitter specifically designed for collecting vital data from marine vertebrates over extended periods, up to a decade. The implantable Life History Transmitter records data throughout the life of a host animal. After the host animal dies, the tag is extruded, and, while floating on the ocean or lying on a beach, transmits previously stored data to orbiting satellites. For tags relying solely on end-of-deployment transmission, reliability and proper recognition of tag state is crucial. The Life History Transmitter uses heuristic tag state determination, in combination with simple error detection and fault tolerance measures, to increase tag reliability and likelihood of data recovery. We used a computer simulation of tag deployments and various sensor failures on a PC platform, in combination with time-accelerated simulations running on the actual deployment platform, to test the functionality of fault tolerance and error detection protocols

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:30 ,  Issue: 4 )

Date of Publication:

Oct. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.