By Topic

Midfrequency "Through-the-Sensor" scattering measurements: a new approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Brown, W.E. ; Naval Oceanogr. Office, Stennis Space Center, MS ; Barlett, M.L.

In this paper, a new paradigm for "through-the-sensor" remote sensing of the seafloor is presented. The methodology has been tailored for use with the AN/SQS-53C sonar found on many U.S. Navy destroyers. Sonar beamformer outputs are processed, and a point georeferenced database of signal attributes is constructed. Corresponding sonar settings and ship navigation information are also included for each database point. Database entries are then fused with environmental characteristics, such as bathymetry and sound speed information. These data may be derived from historical databases, on-site measurements, or a combination of the two. The database is then completed by ambiguity resolution and matching of modeled eigenray paths with database entries in order to associate signal attributes with specific propagation paths. Model inputs are derived from a customized version of the Comprehensive Acoustic System Simulation/Gaussian Ray Bundle eigenray propagation model (CASS/GRAB), which performs propagation estimates over incremental range/depth steps. Illustrations of how the point database may be filtered/constrained, gridded, and displayed are presented. An example of how bottom scattering strength can be derived from the database is presented, followed by an example of a technique for monostatic bottom loss estimation. Results indicate that the approach presented in this paper represents a viable method for conducting "through-the-sensor" measurements of seafloor scattering properties

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:30 ,  Issue: 4 )