By Topic

SCALLOP: A Highly Scalable Parallel Poisson Solver in Three Dimensions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Balls, G.T. ; University of California, San Diego ; Baden, S.B. ; Colella, P.

SCALLOP is a highly scalable solver and library for elliptic partial differential equations on regular block-structured domains. SCALLOP avoids high communication overheads algorithmically by taking advantage of the locality properties inherent to solutions to elliptic PDEs. Communication costs are small, on the order of a few percent of the total running time on up to 1024 processors of NPACI's and NERSC's IBM Power-3 SP sytems. SCALLOP trades off numerical overheads against communication. These numerical overheads are independent of the number of processors for a wide range of problem sizes. SCALLOP is implicitly designed for infinite domain (free space) boundary conditions, but the algorithm can be reformulated to accommodate other boundary conditions. The SCALLOP library is built on top of the KeLP programming system and runs on a variety of platforms.

Published in:

Supercomputing, 2003 ACM/IEEE Conference

Date of Conference:

15-21 Nov. 2003