By Topic

Handling Heterogeneity in Shared-Disk File Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wu, C. ; Johns Hopkins University ; Burns, R.

We develop and evaluate a system for load management in shared-disk file systems built on clusters of heterogeneous computers. The system generalizes load balancing and server provisioning. It balances file metadata workload by moving file sets among cluster server nodes. It also responds to changing server resources that arise from failure and recovery and dynamically adding or removing servers. The system is adaptive and self-managing. It operates without any a-priori knowledge of workload properties or the capabilities of the servers. Rather, it continuously tunes load placement using a technique called adaptive, non-uniform (ANU) randomization. ANU randomization realizes the scalability and metadata reduction benefits of hash-based, randomized placement techniques. It also avoids hashing's drawbacks: load skew, inability to cope with heterogeneity, and lack of tunability. Simulation results show that our load-management algorithm performs comparably to a prescient algorithm.

Published in:

Supercomputing, 2003 ACM/IEEE Conference

Date of Conference:

15-21 Nov. 2003